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This paper is devoted to a critical study of parametric level density fluctuations of systems whose classical
counterparts present chaotic dynamics. Employing a semiclassical theory based on the Gutzwiller trace for-
mula, we show that for large parametric changes the density correlation function, after rescaling, becomes
universal and coincides with the leading asymptotic term obtained from random matrix theory. The essential
advantage of the semiclassical approach is to provide a simple recipe for the calculation of the nonuniversal
scaling parameter from elements of the underlying classical dynamics specific to the system. We also discuss
recent improvements of the semiclassical theory, which introduce a requantization of the smoothed level
density. With this method, we calculate the universal density correlations as a function of a time-reversal
symmetry breaking paramet¢61063-651X98)09211-3

PACS numbd(s): 05.45+b

I. MOTIVATION significantly the classical dynamics of the system nor breaks
or restores any symmetry, unless otherwise specified. The
One of the interesting developments in the study of quanfirst condition is easily realized in the semiclassical limit
tum manifestations of classical chaos concerns parametrigince classically small parameter variations are responsible
correlations. For over a decade, most of the works on quarfor significant level fluctuations. The second condition is not
tum chaos concentrated on spectral fluctuations of a fixedifficult to satisfy in most cases of practical relevance.
Hamiltonian. This large effort led to a solid body of evidence Previous works have concentrated on the level velocity
that if a system is chaotic in the classical limit, its quantumcorrelation functior{4,6]
spectrum exhibits universal fluctuations that coincide with
those of a suitable ensemble of random matridds There

was also some parallel activity in trying to understand the 1 [oE,[— X\ E,[— X
statistical behavior of quantities related to the response ofa  C(X)= o\ = X——| — | X+ = , (2
chaotic Hamiltonian to external perturbations, such as X 2] ax 2 X

Landau-Zener transitiorj2] and energy level curvatufé].
However, it was only a few years ago that Altshuler and

co-workers[4,5] showed that a system whose spectrum fol-whereA denotes the mean level spacing around the state
lows closely the universal fluctuations predicted by randonThis function, although straightforward to evaluate numeri-
matrix theory(RMT) will also present universagdarametric  cally, is not suitable for any exact or systematic analytical
behavior. More precisely, these authors have concluded thalvaluation. We would like to stress that the difficulty is in-
when a chaotic Hamiltonian depends on some external adiarinsic to the function since it requires the precise knowledge
batic parameteK, any correlation function of spectral fluc- of every level as a function ok. Therefore, instead of the
tuations taken at different values ¥fbecomes system inde- ysual two-point Green’s function, one would need a combi-
pendent after a proper rescaling. nation of arbitrarily highN-point Green’s functions, which is
In this paper we study some universal spectral features ofery impractical. A few years ago, Berry and Keatifig
a quantum mechanical problem whose Hamiltortaigen-  proposed a semiclassical approximation based on the density
erates chaotic motion in its classical I|m|t Considering acorrelation function folC(X). Their result agrees very nicely
parametric dependence f on X, the Schrdinger equation  with the numerical resulfg] for the largeX limit, indicating
reads that the two-point Green’s function gives a good asymptotic
expansion. For the smal region, their analytical expression
HOX)W,(r;X)=E (X)W ,(r;X). (1)  gives, as one would expect, incorrect results.
For these reasons, in order to study parametric statistics
In what follows the parametet will be associated with any semiclassically, we will rather focus on a formally more
tunable physical quantity provided its variation neither altersamenable quantity, namely, the density correlation function
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] Q- x|, 0O — X the supersymmetric method, can be easily adapted to discrete
KIQX)={ p| E= 5 X=5|p| E+ 5 X+ 5) o Hamiltonians. Within this context, one of the most important
EX conclusions drawn from Ref$5, 6] is the existence of a

) single quantity controlling the scale of parametric fluctua-
where the fluctuating density"=p—(p> is defined in terms  tions of all spectral functions of chaotic Hamiltonians. This

of the level density result was obtained explicitly for disordered metallic system
in the diffusive regimdthe so-called zero modas well as
1 (but less surprisinglyin RMT whenN— . More precisely,
p(EX)=— —m EV E-E, (X)+i0" (4 if X is the external parameter, the rescalingX/X, where
and the average densify) or the inverse mean level spacing 1 dE,(X)]?\ "2
1/A. Sometimes, in the semiclassical approach, it is conve- ¢\ A dX ' @

nient to use the cumulative level densiti(E), defined as

N(E)=fE..dE'p(E’), instead of the density itself, as we eliminates all system dependence in the parametric correla-
shall see in Sec. IV. tion functions, up to a global prefactor. We will later argue
All statistical measures of spectral fluctuations presupposghat a similar conclusion can be obtained from a purely semi-
a constant average level spacing, which is not guaranteed f@fassical approach.
general families of Hamiltonians. Indeed, the mean level \We now present the results of RéB] in the rescaled
spacing for smooth Hamiltonians is accurately approximatedorm, assuming also that all energies are expressed in terms
by the Weyl ruleNW®Y(E,X)~V(E,X)/(27#)%, whered is  of A, introducingw=Q/A. In the absence of time-reversal
the number of degrees of freedom and symmetry, the final result for the density correlation function
is

V(E,X>=f d%p d%g ®(E—H(p,q,X)), (5

1 o0
_ _ _ _ _ kCY¥(w,x)= 1 Ref d)xf dng exd —FCYE(\ A )],
being the unit step function. It is therefore desirable to 2 -1 1
work with the “volume spectrum” rather than directly with (8
the energy spectrum, as proposed by Goldlstrgl. [9]. So
as to avoid some technicalities in the classical theory, wavherek=K/(p)? and the free energy is given by
will adopt the alternative procedure of defining an “unfolded

classical Hamiltonian” %2
FGUE_

H'(p,a,X)=V(H(p,q,X),X). 6) 2

(N=\2)+imo T (A —\y), 9

The classical motion is then identical to that of the originalwith ™ =w+i0*. The integration in Eq(8) can be carried
Hamiltonian, except for a rescaling in time. Quantizing Eq.out explicitly and gives
(6), we obtain levelsE] that fluctuate withX about stable
mean valuesv(27%)9, i.e., for the unfolded systemA 1 X+ i wlx
=(2mh)%. (The primes will be omitted in what follows. kS0, x)=—; Im[ erfC( —)
The paper is organized as follows. In Sec. Il we present a 4x V2
reminder of the main parametric RMT results, extracting the .

: . : —wl/X+imTX
relevant asymptotic correlation functions. In Sec. Il the X erfc(—
standard semiclassic theory is discussed, putting emphasis on V2
the diagonal approximation and its sequels. In Sec. IV we
discuss the implications fdk({2,X) of the recent proposal
of Bogomolny and Keatindg10] for requantization of the
smoothed level density. This method gives very interesting
results for level density correlations in the crossover regime, hare erfe is the complementary error functid].

between time-reversal and broken time-reversal symmetric g, systems where time-reversal symmetry is preserved,

systems. This is discusged in Sec. V. _We symmarize thFhodeIed by the Gaussian orthogonal ensenfBi®E), the
results and conclude with a general discussion about th&ensity correlation function is

range of validity of the semiclassical approach in Sec. VI.

—w/X—iﬂ'X)

—erfc
=

] , (10

1 ) )
Il. REMINDER OF THE RANDOM MATRIX THEORY kGOE(w,x)=Ref d)\f d)\lf d\,
RESULT -1 1
The RMT calculations leading to an exact expression for % (1A% (A=X1hp)?
K(Q,X) have pecome rglatively standgrd. Severgl references (2)\)\1)\2—)\2—)\§— )\§+ 1)2
can serve as introduction to the subjésee, for instance,
[11-13). The detailed derivation ok (Q,X) was given in Xexd —F®f N\ 1,0\p)], (1)

Ref. [6] in the context of disordered metallic systems. The
technique employed for such continuous systems, known asith the free energy
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NG of the semiclassical approach used in the study of parametric
GOE. 2y 2 2 2 2 H + .. . . .
Foi= 7 (M=M= A=A+ D +imw (A =Ahy).  variations. For this purpose, the calculations below will be
(12) carried out with special care.

In distinction to the previous case, here the triple integral in
Eq. (11) cannot be expressed in a closed form. IIl. SEMICLASSICAL APPROACH

We will now focus on a regime where one has eitRer The fluctuating part of the level densip/(E,X) can be

>1 or w>1. Considering initially large variations of the gmoothed over an energy rangé# and expressed, in the
external parameter, one finds that the leading contributions t@amiclassic limit by the Gutzwiller trace formuls]

the multiple integrals come from the regions around two
points:A=\;=A,=1 andA=—\;=—\,=—1. To obtain

an asymptotic expression fd(w,x), we expand the free
energies around these points and retain limear in \)
lowest-order terms. Performing the exponential integrals, we

find that [ i 7
Xex;{grsy— S vy g|r|Ty , (15
2— x4 N 1 coq27w)
2, 2 4,4\ 2 2, 2 4,4
2 (Mot mX)T 2 mwttmix (13) whereT,,M,,S,, andv, stand, respectively, for the pe-
riod, monodromy matrix, action, and Maslov index of a pe-
and riodic orbit labeled byy. The sum is performed over all
primitive orbits y and their repetitions (positive and nega-
mwl—m*x44 1 cog2mw) tive), irrespective of multiplicity due to time-reversal or
(m2w?+ mx414)2 + 2 (2w’ + 7x14)2" other symmetries. The smoothing pff can be dor_le in other
(14) Ways than the exponential cutoff introduced in E5).
Later on, we shall also cut off the sum over periodic orbits
The right-hand sides of both equations represent the leadirgharply at a certain period*. Both h/T* and /2w are
terms of an asymptotic expansion on batandw whenever ~always taken to be larger than or equal¥oThe derivation
| m2x?BI2— i mw|>1, with 3=1 for the GOE ang3=2 for  Of the density correlator we present below is not strictly new
the Gaussian unitary ensemifBUE). At x=0 one has the [see, for instance, Ref9]). However, here we will carry it
usual 1b? decay of the density fluctuations plus the first out with great detaileven correcting mistakes of previous
oscillating terms. Notice also that the oscillating andWorks) and, by doing so, will clarify its physical content as
nonoscillating terms are held only to their lowest order inwell as its limitations.
x~2 and 2. For the GOE, this means that we are not Let us write the correlation functiok((2,X) in terms of
showing a nonoscillating term of ordesr *. For the GUE, the semiclassical level density as given by Ep),
higher-orders terms can be obtained without much effort by
recalling Eq.(10).

1 T
fl _ Y
PEX=2 ; |de(M",—1)[?

1 7w
kGUE(

w,X)~—

KOOF 49, x) ~ —

The energy oscillations present in Eq$3) and (14) are KS(Q,X)= ;2 2 A, |E+ QXJF 5
related to the quanturfdiscretg nature of the energy spec- (27h) Yyt 7 2 2
trum. For the GUE case they appear even at the lowest order
in w~?; in fact, forx=0, the asymptotic forn{13) is actu- XA ( E— 9 X— f)
ally exact and applies to alb scales. For the GOE case, vr 2’ 2
since level repulsion is less pronounced, the oscillations only .
show up at the next-lowest order, namely, they are weaker Xexp{ ! [rS (E+ @ X+ X
corrections to the leading ~2 decay. il 7 272

One is tempted to imagine that theoscillations should Q X o
not be present in a formulation where there is no intrinsic 'S ,<E— — X- _) Fi=(rv,—r'v,)
energy level quantization. Indeed, in Sec. Ill we will verify 7 2 2 207 7

that the semiclassical trace formykpplied in the usual way
and based on the assumption that the underlying classical
dynamics is chaoticyields only the monotonic decay of
k(w,x). Still, a problem emerges as to whether one can sys-
tematically obtain oscillating terms, or any parametric corre-

7 '
= (T, 1T, )

[ —

> : (16)
EX

lation function beyond the asymptotic limit, in a semiclassi-whereAyr=Tyldet(l\/lﬂ/—l)l’l’z. In order to further proceed
cal framework. This question was partially answered byanalytically, we restrict the calculations to a regime where
Bogomolny and Keating10] when they calculate&(w,x  classical perturbation theory is applicable. This means that
=0) using an expansion in periodic orbits and forced energyve shall consider variations & andX that classically imply
level quantization as an additional constraint. We will returna small change in the actior®,. Such a change can none-

to this point later.

theless be very large in the scalefgfcorresponding to large

Another important aspect, often neglected but particularlyguantum effects. Under this condition, it is a good approxi-
relevant to mesoscopic phenomena, is the applicability rangmation to write
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S <Ei9 X2 J dt AXE,X,1) 2 8(t—T,)=> A%EX). (20
7 27 2 Y Y
Further simplification can be achieved using the uniformity
— dS, aS, X I - ;
=S/(EX)x——*——+- principle over periodic orbitgalso known as the Hannay—
JE 2 X 2 Ozorio de Almeida sum rujg17]
—_— — Q _— X 2 'V
=S, (EX)*T,(EX) T +QEX) Z+-+ (17) A(EX )Y 8t-T,) g It]. (21)
Y t|—oo

which definesQ,, as the parametric velocity of the orbit ac- It IS Important t? no_t|ce that this result independs on the
tion. The general expression for the parametric variation of c€nter-of-mass” variables andX. We can then evaluate
the action is presented in Appendix B. In the absence of any

dependence on Planck’s constant, one can neglect the energyy(Q X)= g Re fxdqt|eitQ/h7277|t|/h<eiQ(E,;,t)X/h>
(or parametercorrections toA, as compared to the strong ' 2(mh)? P '
energy dependence of the exponential term. In this approxi- (22

mation, consider the evaluation of o . o .
The lower limit 7 is the period of the shortest periodic orbit.

Of course it is simplistic to extrapolate the uniformity prin-
ciple this far, but it is easy to improve the theory by includ-
) ) ) _ ] ing a few short orbits individually and hence increasing
For orbits with period shorter than the Heisenberg titheé  The average in Eq22) is evaluated over periodic orbits
=h/A, one does not in general expect to find pairs of orbitsyith fixed periodt. In view of the fact that the rest of the

(7,7") with actions differing by less thah, unless they are jntegrand oscillates rapidly in time, it is important that the
symmetry related orbits. As a consequence, upon energy ay,

: ; L inite range inE andX allows many orbits with a given large
eraging| ,, (T<ty)~g,d,,, whereg, is the multiplicity period. There being two parameter families of periodic or-
of symmetry related orbitWe take here the simplest case | . — =
where any symmetry holds for all considered parameter valPits: one should tak&,(E(X),X,t) and subsequently aver-
ues. The general situation where this is not true is discusse@ge only overX or vice versa. For the energy correlation
in Sec. V) This is the essence of the diagonal approximationWith no variation of parameters, there will be isolated peri-
On the other hand, due to the exponential proliferation ofodic orbits of a given period in the energy range where the
orbits, for sufficiently long times, i.e., for a small smoothing averaging is carried out. Thus, for fixéqd the average in Eq.
parameterz, one enters a regime where there is an abun{22) runs over a large number of periodic orbits with para-
dance of pairs of periodic orbitsy(y') satisfyingS,—S,, metric velocityQ,(t), which may be considered as samples
<#. This situation is expected to occur for time intervals of the probability distributionP,(Q). The latter is assumed
longer thart,, (or, correspondingly, foE<A). Under these to be Gaussian,
circumstances, the diagonal approximation is no longer
valid. Actually, for such long times even the validity of the 1
trace formula is problematic, so that the unsmoothed energy P(Q)= — ex;{
spectrum should be resummELb)]. At this point the neces- V2mQA(t)

sity of smoothing becomes evident: It keeps the approxima- i ) . .
tions under control. because our theory involves arbitrary parametric variations

Restricting ourselves to the range where the diagonal ad?'(x)- Even if there exist correlations among the actions of
proximation is valid, we have the periodic orbitsy(t), as postulated by Argamaet al.
[18], these will in general be broken by the parametric ve-
locities

Iyy’(T):<ei/ﬁ[Sy(E,X)—Syr(E,X)]>E. (18)

2

: (23

2Q%1)

1 _
KD(Q,X)=W <; 9,/A,(E.X)[? T, oH
Q,= fo dt —~ (p(t),q(t),X), (24

i _
X exp{ =[rT,(E,X)Q
h evaluated along each orbit. The Gaussian width is a function

_ 7 of X andE (the center of the energy rangéeing defined as
+rQy(E,X)X]—2%|r|T7]> . (19
X — 1
E,X 2 _ 2

To evaluate the average in E4.9) we first notice that, in a

fully chaotic regime, the proportion of high period orbits that whereN(t) is the number of periodic orbits with periad

are repetitions of lower periods is exponentially small, so weNote that we takeQ=0 since the shape of the shell for the
neglect all|r|#1. In the next step we recast EQ.9) as an  unfolded system is affected b¥, but not its volume, so
integral by defining the smooth interpolating functions gH/gX averaged over the shell is zero. Although the Gauss-
A?(E,X,t) through the relation ian assumption is not quite equivalent to the uniformity prin-
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ciple, the arguments presented above make it plausibleéary for a full understanding ok ({2,X). An important im-

Nothing is yet known of the relation between higher mo- mediate application concerns possible transitions from GOE

mentsQ" and QZ, so as to obtain a more rigorous result. families to GUE families of Hamiltonians. If this occurs for

Numerical simulations for the particular case where the exa small variation of a second parameter alifl, the clas-

ternal parameter is a magnetic flux lif@] provide further sical parametere should remain unchanged, whereds

support of Eq(23). must grow because of increased level repulsion. By compar-
The average in Eq22) can be evaluated using E®3): ing the invariant form of Eq(28) with Eqgs.(13) and(14) we

verify that X, will increase by a factov?2.
2

(eiQXIhy — exr{ - % QAE, X t)|. (26)

IV. REQUANTIZATION AND ITS IMPLICATIONS
FOR THE DENSITY CORRELATION FUNCTION
As we commented previously, the energy average was al-
r_eady ut_|I|zed in obtaining the periodic orbits wnhjxed PE- 3 semiclassical procedure to obtain the density correlation
riod. Strictly, we should now average E®6) over X, but g nction K(Q,0) and its parametric extensiok(Q,X).
bothQ* and the Gaussiaf23) are smooth functions of, so  Their result fork(£2,0) coincides with the exact GUE ex-
we may just evaluate the latter at the center of the averagingression for systems with broken time-reversal invariance
range. As for the time dependence of the mean square parand gives the leading GOE oscillatory and nonoscillatory
metric velocity, we refer to previous treatmef®19], lead-  terms in powers of» ~ 2 for time-reversal symmetric systems.

In a recent paper, Bogomolny and Keatirid)] proposed

ing to the result We will here rederive their results within the wider context
— of parametric variations and critically comment some of its
Q*=alt| limitations.

with The starting point of the derivation in Rdf10] is stan-

dard and considers the sum over periodic orbits in the
o % | 9H IH Gutzwiller trace formulg15) up to some value of*. As a
a(E,X)=2f dt<—(p(t),q(t))—(p(O),q(O)) . consequence, the information about energy scales smaller
0 X X ES thanz/T* is omitted and, strictly speaking, the connection to
(27) RMT results cannot be made in such an energy range. How-

Here the average over the periodic orbits has been subsffver, one can still introduce information related to the dis-
crete nature of the spectrum through the “requantization”

tuted by an average over the entire energy shell, in accofz€t€ !
dance with the uniformity principle. It is important to note condition[21]
that the decay of the classical correlation function in 4) 1
need only be integrable since many available chaotic systems N (E(T*)=v+ =,
do not exhibit full exponential decay of the correlations. 2
Strictly, the linear dependence @ ont should hold only
for times longer than that of the decay of the correlation
function, but numerical investigation8,20] have found this
feature to be quite robustNotice that there is a factor 2
missing in the definition ofx in Ref. [8]. Modifying « ac-
cordingly, the semiclassical prediction ¥, changes by a
factorv2. As a result, the agreement between the numeric
and the semiclassical theory becomes excejlent.
Substituting Eqs(27) and(26) into Eq.(22) and evaluat-
ing the integral in the limitr— 0, we finally arrive at the
main result of this section

(29

by which, for a given value of*, one has a well-defined
procedure to obtain a set of eigenvaly&s(T*)}. It has to
be stressed that such a procedure does not imply any control
on accuracy. This is equivalent to saying that by increasing
the value of T*, it is not guaranteed tha{E,(T*)} will
converge to the exact spectrum. Actually, this quantization
Tule is not applicable forT* >t since for such periods the
cumulative semiclassical level density can become a non-
monotonic function.

The requantized level density, defined as

1 Q2—(aX?2hi+27)? D« (E,X)=>, S(E—E,(T*,X)), 30
KD(Q’X):_W[QZ+(ax2/2ﬁ+2n)2]2’ 29 e E ST =

. _ . can be rewritten in the form
where 8=2/g. Nongeneric long-wavelength oscillations in

the correlation, characteristic of each individual system, ap-
pear when we chooseequal to or greater than the period of Dr+(E,X)=pr«(E,X) Y, 8(Ny«(E,X)—v—1/2)
the shortest periodic orbit. The above expression corresponds g

to the leading nonoscillatory term of the asymptotic expan- +o

sion of the correlation function exactly calculated within =p1+(E,X) E (—1)* exd 27ikN«(E,X)],
RMT [Egs.(13) and(14)] and hence is presumed to hold for k=—e

generic chaotic systems. (31)

On the other hand, this formalism gives a recipe for cal-
culating &, which is a system-specific quantity and fixes thewith p1«(E,X) standing for the parametric level density
value of the parametric rescaling factg. From this point  given by the truncated trace formula. It is immediate to see
of view, the semiclassical method and RMT are complementhat averaging Eq(31) yields
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D1« (E, X))e x={p1+(E,X)) e x=pVY(E,X), (32 Q_ X
(Dt Yex=(pT JEX=P expl 21| k,NWev!| £+ E!X"' >
equivalent to the usual level density, easily obtained from the
Weyl formula. Wevi Q_ X
The advantages of this procedure become evident once we —ko N E— > X= 2
analyze the spectral fluctuations. Let us study the two-point E.X
spectral correlation function fdd 1« (E) in order to compare (2mh)® (k;— k) 6E
with the results of the previous sections. It is useful to write = sin[ 3 }
the density correlation function in the form (ki —kp) 6E (2mh)
sinf (k;—kz) 6N] (36)
Q _— X = —l
K(Q,X):<DT* E+ 5. X+ 5 (ky—kz) 6N
Q X which is negligible if the averaging regiofE extends over
X Drs ( E— — X— _)> —(pWVeh2 (33 ~ many states, unledg =k,. Thus,
2’ 2 = '
E,X
KK*0(0,X) = LT S 5
The averages are defined as in Sec. Ill. Thus ' 472 90,08, Fo K
X : _ Weyl
QX =\ pre| EF 5 X+ 5o E- 5 X235 XDy, 02, X1, %) (37)
K (evaluated af);=—Q,=0/2 andX;=—X,=X/2), where
X > (-1l k=k,=k, and
kl’kZ
Q_ X D (Q1,05,X1, %) =(exp{2mik[ NI (E+ Q1 , X+Xy)
X exp 2mi klNT* E+E, +§ _
~NL(E+ Q2 X+X)Dex- (39)
—kZNT*(E— E,Y— E)H> = (p"2, One is now left with the formidable task of averaging Eq.
E.X (38), for which there is no clear controllable strategy. Bogo-

(34) molny and Keatind 10] proposed a kind of Gaussian ansatz
that in practice simplifies the average by making

. _ _ 2 . .
One can recover the standard semiclassical result discuss %XF['G(E)D_eXr‘[ (G(B))/2]. Although appealing, this

in Sec. Il by considering the simplest term in the doubleansatz is harder tojgs_tify classically than _asimilar passage in
sum, namelyk=k, =k,=0: Sec. lll. Moreover, it is not clear how to implement the av-
) —RKi=Ko=U.

eraging in a consistent way. Nevertheless, in Appendix B we
attempt to justify the validity of the Gaussian assumption

KK=0( ), X) = pfl* E4— X+ 2 (for Ia_lrge energy dlff_erer_\ces as compared\jausing solely
T 2 2 the diagonal approximation. Based on that, we have
o[ E- %’Y_ §)> @y PQL0:Xe Xo)=exp — 2m2K([Nps (B4 0 X+ Xy)
E, X

—Nps(E+0Q,, X+ X))t (39

This is the same calculation as presented in Sec. Ill, excepthere are at least two straightforward ways to evaluate the
that now the eXponential cutoff is substituted by a Shar%verage in Eq(39), both g|v|ng the same final result. The
truncation aff™*. This causes a spurious oscillatory term thatfirst one is by direct subtraction of the cumulative densities,
becomes negligible only in the asymptotic regime wherefollowed by the use of the diagonal approximation. The sec-
aX?/2h>A. In other words, the semiclassical result be-ond one has the nice property of putting in evidence some of
comes independent of the cutoff only at the asymptotic limitthe delicate points of the semiclassical averaging procedure
where it coincides with RMT. In Ref10], this term with  and will be discussed now. An important point to have in
k;=k,=0 was called the diagonal approximation. This mind, however, is that the average in the exponent of Eq.
should not be confused with the standard diagonal approxi9) is just the usual number varianc®?(Q) when X,
mation discussed in Sec. IIl. =X,. If we were interested ifK=0 correlations af)<A

We are left to discuss the terms with#0 andk,#0. It and simply substituted into E439) the exact RMT expres-
is easy to see that the ones wikh#k, give a negligible  sjon for32(Q), we would obtain an incorrect result for the
contribution to the correlation function. |nd69d, leIdIng the level density correlation function. We interpret this fact as a
spectrum for the unfolded syste(f) into a smooth and a clear indication that the Gaussian ansatz, which neglects cor-
fluctuating part Nr«=N"'+NI,) we haveN"W®(E,X)  relation between orbits, is problematic f6t/A<1. Even
=E/(27h)". For this part, the averag84) furnishes Bogomolny and Keating10] noticed that the Gaussian an-
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satz does not lead to the correct expression for the GOBET*|>1 and|é7|<1. As a consequencE, (£T*) is expo-
Until the theory is developed further, we believe that thenentially small andE;(£é7) can be expanded up to first order
exact result for the GUE should be treated as a fortunatgl4]. The result is

coincidence. This limitation will appear more explicitly be-

low.

Let us start by writing Eq(39) as In A(Q4,05,X1,X2)~29 Rg —y—In({7)]

*
A(Q;, 05X, %) ¥ N o _)_ .
Dy, Xe Xy) = (4 Azo 1,X2) o) 29 RE{ y+In . IN(ET*) |,
(47)

with

N A(Q; .00 Xy . X)= 472N, (E+Q, X+X yvherey is the Euler constant. Collecting the above rgsults

N A1, 22, X1 Xo) =47 (Nr ! v into Eq. (39), we see that the first two terms on the right-

XNQ*(E+921X+X2)>E,§1 hand side of Eq(47) are canceled by In, and
(41
(I)k(‘Q’l!QZin!XZ)

andAy,=A(0,0,0,0). Then we evaluatk, using the diago- _2g2

a(Xl_Xz)z

nal approximatior(see, for instancg22]) [
PP — 7 (Q1- Q)+ —— T

(48)

— ™ 1 T*
<[NT*(E,X)]2>E,;:12 f dt?=izln(—).
27" Jr 2m T Hence the sum ovek in Eq. (37) is an asymptotic series in
inverse powers of T*. To obtain the parametric generaliza-
fion of Bogomolny and Keating resullt0], we cut off this

eries in the first term and choo$&e?=ty/2, obtaining

(42

The lower bound of integration is of the order of the shortes
periodic orbit, beyond which we cannot even extrapolate thé
uniformity principle. Recalling that in our case the energy of

the shell is identified with its volume, we obtain, from purely cog27Q/A) A ‘4/5
geometrical considerations, that KK=1Q,X)= ,
2A2 —i7Q+ amX¥h|
9S (49
TzﬁocE*l*l’d). (43

which, after proper rescaling, is exactly EQ.3) or (14),
depending on the symmetry class labeleddsy 2/g.

It thus appears that requantization has reproduced pre-
cisely the asymptotic form of the correlation function calcu-
(44) lated exactly within RMT if we postulate the same factor of

v2 for the change irX; from the GOE to the GUE. However,
in taking a sharp cutoff for the periodic orbit sum, we add the
It is interesting that we recover the RMT result only in the spurious oscillatory term
limit where the phase space dimensiba- . (Incidentally,
the above formula accounts for the spectral rigidity of the

integrable limit ofd=1.) o COS( aT* —¢)exp< ~ asz*)

If we now chooseT* = «ty (ty is the Heisenberg timeEq.
(42) becomes

+ const.

SRR
<[NKIH(E!X)] >_Q 1_a n K

Applying now the diagonal approximation to the numera- 3 242

tor of Eq. (40), we write 2 (50
In A(Q,Q5,%1.X,) 2| 0%+ T) }
=2g Re fT*thex;{i—(Ql—Qz)t—M , . 4 2 .
, t h 2h to Eq. (28) with =0 [above, p=tan “(2hQ/aX?)]. This
(5) will certainly be negligible ifaX?T*/24%>1, but we cannot

push aX?/2h down to the averaged level spacing. Indeed,
the derivation of Eq(49) does not hold at this level either
since there one should not neglect the upper limit of B6).
In A(Qq,Q,,X1,X5)=2g R Eq(£7) —E(ET%)], These conclusions are maintained if we substituté\fpr
(46)  theintegral of the smoothed density of Sec. IIl in the requan-
tization of Bogomolny and Keating. The steps in the calcu-
with £€=—i(Q;—Q,)/A+ a(X,;—X,)%/24? andE, denoting  lation of the correlation function remain the same, so now
the exponential integral14]. Recalling thatT* is of the  K¥=0(Q,X) is exactly Eq.(28) with a finite 5. The expres-
order of h/A and 7 is a much shorter time scale, we have sion for

which can be expressed in a compact form as
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© 1 pair is no longer perfect, but can still affect the correlation
In A(Q1,02,X1,X5)=29 Ref dt-expi(Q,—Q)t/h function. Thus, in the diagonal approximatiofi,(Q) can
T be written ag19]
—[a(Xy—X5)212h%+ 2 9l h ]t}

1 ® )
=29 ReEy[ ~i(Qy— Q) 7/t k()= ——— Re [ ditleh-2ii
Z(Wﬁ) T
— 2 2
+a(X1—X5) 1128+ 271 ] X<1+eiQ(E,x,t)X/ﬁ>E' 50

(51
Following the arguments of Ref19] and Sec. IIl, we write

now holds, in principle, for any value @, or X;, including  (exp(QX/))e=exf —(E)|t/%*] and obtain
zero. We can now use the same approximation for the expo-

nential integral function as in E447) to obtain KP(Q)=— ;
X 27302 +47%)
D (01,05,X1,X5) 1 Q%*-[a(E)h+27]?
: _ - — . 55
i a(X,—X,)2 % |20k 272 {Q2+[a(E)/h+27]?%)? (59
= _%(91_92)"‘7"_2”/71 2. '
n

To include requantization corrections we proceed as in
(52 Sec. IV [see EQs.(39-(45)], having to calculate now
Ax(Q4,Q5) andAy(0,0), which are given by
which leads to Eq(49) when we choose;=A/27 and as-
sumeQ) and aX?/2% to be much greater than the mean level | A(Q1.0,)=2 ReJ'T* gei(ﬂlfﬂz)t/ﬁ[l_’_ea(E)t/fiz]_
spacing. In this sense, the energy smoothing wjthorre- ,
sponds to the cutoff tim&* (T* ~h). (56)

This expression can be approximated by
V. THE GOE-GUE TRANSITION

So far we discussed only level correlation functions in the, A(Q1,Q,)~2 Re{ —2y+21n K
limits of preserved or fully broken time-reversal symmetry, ' T
corresponding in RMT terminology to the GOE and GUE

cases, respectively. We showed that X6#0 the semiclas- —Inl =i MT*}

sical approach is only asymptotically correct. It is notewor- h

thy that the requantization method gives the exact result for (Q,-0,) aE)

the density-density correlation function f&=0 in the GUE —In (—i 1 2 > )T*H, (57)
case and fails to reproduce the GOE result in the same situ- h h

ation. To study the nature of this peculiar behavior, in this
section we use the requantization procedure proposed in Ref
[10] to analyze the GOE-GUE transition. We compare our 5{

sulting, for the density correlation function, in

results to the exact analytical results originally obtained by K|>|(‘|:1(Q):CO
Mehta and Pandej23|.
The density correlation function we are interested in is

1 1
27— - .
A)[ZWZQZ 2[ w202+ 2a2/ﬁ2]}
(59)

This equation plus the diagonal term coincides only asymp-
Ky(Q)= pfl( E— Q’X)pﬂ( E+ QX) , (53) totically (w>1) with the RMT result obtained by Mehta and
2 2 c Pande)[23]:

; 2
whereX is the parameter that breaks time-reversal symmey ()= — ( S Trw)
try, usually an external magnetic fieRl Notice that in dis- T
tinction to the previous sections, the correlation function
considers both densities at the same valuX.of _
To derive the density correlation function in the GOE- (w2 + 16m2x*)?

GUE crossover using the requantization scheme, we first 5 2.4
have to write and explain the standard semiclassical expres- __ 1 n w”— 167X
sion obtained in Ref[19]. This is easily done by recalling 2m%w? 272 (w?+16m2x4)?
the results from Sec. Ill. Within classical perturbation theory
the GOE-GUE transition is caused by an external magnetic
field: ForB=0 every path has its mirror image, obtained by
momentum conjugation. This symmetry is taken into account
in the trace formula by the multiplicitg factor. When the (where we have employed the rescaling of Set. It is
symmetry is broken, the phase matching between orbits of anportant to have in mind that the derivation of E§8) uses

w? co¥ mw— 167°X* sifTw

1 1

+coq2 —
$2m0) 5 22 20t 1675

(59
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an approximation inAy(0,0) that requiresa T*/#? to be It seemed that one would have to proceed beyond the
much larger than a unit. FarT*/42<1, the dominant term diagonal approximation to recover the oscillatory behavior
of Kl)'((l=l coincides with the GOE result obtained in Sec. 1V, that RMT predicts at short scales. However, the remarkable
as it should. requantization scheme advanced by Bogomolny and Keating
Again, we identify the RMT crossover parameter with shows that it is only necessary to feed in th(_a discreteness of
a semiclassical quantity given by the relation thg quantum spectrum to obtain an expression for th_e corre-
2= a(E)/4m?hA. We stress that the agreement is On|ylat|on functlon§ that extrapolate.to tlhe. correct OSCI||221'[0I’y
strictly exact for fully broken time-reversal symmettshe EMIX4;22¥|tIt n lthe' asytmptt(inc ¢ “m'tthotf '*’;‘fgd“rﬂ |
GUE). To understand this point, it is insightful to examine . & . 1L1S also Important to stress that only diagona
the supersymmetric derivation of the GOE-GUE CrOSSOVemformatlon about periodic orbits enters into this result, con-

. - . : . Erary to what the title of Ref[10] may suggest. In other
for the density correlation funct|ofi24]. By qllrect compar- —yyorgs, nothing is said about correlations among orbit ac-
son, one can observe that the semiclassical method fails

! _ X ttﬂ)ns, so that these may affect only higher terms in the
reproduce the structure of the threefold integral that is ubiqgqympiotic expansion. In fact, to obtain higher-order correc-
uitous to all qalcula‘uons of correlation functions in the GOEtjons matching the exact series, one would certainly need to
limit, as previously noticed by Bogomolny and Keatirid]. introduce information about interlevel correlations as well,
which is apparently beyond the capability of any present
semiclassical approach, especially in the case of arbitrary
parameter variations.

The Gutzwiller series does not converge in the limit of We have based our discussion of Bogomolny and Keat-
small smoothing. Indeed, it can be argued that the exponerg’s requantization on the simple Gaussian assumption dis-
tial smoothing used in Sec. Il is insufficient, but GaussiancUssed in Appendix B. Itis true that in their paper they also
smoothing does work and leads to equivalent results. Theresent results derived directly from ti#function. The ad-
application of the periodic orbit theory for nongeneric long- Vantage is that account is then taken of the correlations re-
range oscillations of the energy level correlation functionsSUlting from multiple repetitions of each periodic orbit. How-

was pushed in the past decade to a range where contact COLﬂ}?er’ this is' a weak effectas they shqw whereas the
be made with the universal regime of RMT. This involves N egral that is then exactly performed still presupposed ran-

) . oo - , dom phases between different periodic orbits. This absence
the uniformity principle for long periodic orbits as well as

the diagonal roximation. In our study we hav d thof correlations between orbits with periods below the
€ diagonal approximation. In our study we have use eisenberg time seems to be at the basis of the success of the
semiclassical trace formula to show the universality of the,

) . . . X equantization scheme. Thus it will be interesting to study its
level density parametric correlation function for Class'ca"ycompatibility with the results of Argamaet al. [18].

chaotic systems. This universality manifests itself after a The intrinsic limitation of the semiclassical method to
proper rescaling of the correlation function variables. Withinggyer small energies at the quantum scale is remarkably
the range of validity of the semiclassical formulation and inmanifest in the parametric correlations. The lack of accuracy
the diagonal approximation, we have obtained the samg energy range§)<A imposes a limitation on the accuracy
functional dependence on the energy and external parametgf parametric correlation function fot<X_, as one can see
found by the method of RMT. from Eqg.(28). In the standard derivation of Sec. Ill, this is a

From a purely utilitarian point of view, it may appear direct consequence of the necessity of smoothing the level
unnecessary to rederive RMT results within a semiclassicadensity. Even in the requantization scheme, although not ex-
theory. Yet it is only in this way that we can calculate the plicitly, the same problem occurs since both sharp and
arbitrary parameters in RMT as well as derive the nongenerismooth cutoffs in the Gutzwiller series do not ensure conver-
long-range oscillations characteristic of the individual sys-gence to the actual eigenvalues. The theory of Sec. V em-
tems that we wish to measure. In the present case we confirghasizes that it is only for fully broken time-reversal sym-
that the unfolded mean square parametric velocity diminmetry (the GUB that the requantized correlation function
ishes by a factor ofZ when the time-reversal symmetry is ¢an be extrapolated to an energy range below the mean level
broken. spacing. o .

The semiclassical description of parametric correlations Finally, we remark that in this work we did not attempt to
relies on the ansatz of E(23), which is based on the central investigate deviations from the universal, RMT behavior due

limit theorem and leads to E427). To demonstrate rigor- to large-scale structures in the spectrum that can be ulti-
ously the validity of Eq.(23) for a generic classical chaotic mately related to short periodic orbits of the systesee, for

system, a systematic study of higher moment€qfis re- ‘_“Sftance’ the supersymmetric treatment qsed in [F25].for_
quired, which is quite a difficult task. Notwithstanding, thereflnlte conductance disordered systemgain, the requanti-

is solid numerical evidencEs,20] to support the proposed zation sc.heme seems to be a 9°°d. starting point for .SUCh
Gaussian ansatz. As a consequence of(Eg), aX2/2% will systematic studies from a purely semiclassical point of view.

always appear on the same footing(asn the semiclassical Unfortunately,. at present we only know how to proceed
approach, i.e., by replacing) with iQ — aX2/2h, as sug- safely by restricting (_)urs_elves to the energy range where the
gested in Ref[10]. In general, this is not the case in RMT, as diagonal approximation is accurate.

one can see in Sec. Il. Only after linearizing the “effective
action” (what we do to generate the asymptotic expansion
do we see the semiclassical structure emerge. It is important The authors gratefully acknowledge Conselho Nacional
to notice that, contrary to what has been written previously ide Desenvolvimento Cieffizo e Tecnolgico (CNPg for

the literaturg]9], « is not related to a Lyapunov exponent. partial financial support.

VI. FINAL DISCUSSION AND CONCLUSIONS
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APPENDIX A: PARAMETRIC VARIATION APPENDIX B: JUSTIFICATION FOR THE GAUSSIAN
OF PERIODIC ORBITS ANSATZ

It may be surprising that we can integrate the parametric In this appendix we motivate the Gaussian ansatz used in
velocity Q,, in Eq. (24), obtained from classical perturbation Ref.[10] using arguments based solely on the diagonal ap-
theory to yield the exact result proximation. Let us start by Taylor expanding the exponen-
tial term of @, of Eq. (38), thus recasting the original expo-
nential averaging problem into an averaging of increasing
powers of 6NT*)n with 5NT*—NT*(E X)— NT*(E X').

The lowest-order term of the Taylor expansion=1),

where £=(p,q) are vectors in the classical phase spacetaken within the validity range of classical perturbation
Thus there is no limit on the period of the orbit if we keep theory, can be written as

the right order of integration. We can obtain the expression
above by embedding the one-parameter family of Hamilto-
niansH(&,X) into a single Hamiltoniari{ in a phase space

X2 TEX)  gH
S(E,Xz)—S(E,X1)=fX deO dt&—x(f(t),X), (A1)

(NT*(E+Ql,X+X1) NT*(E+QZ X+X2)>E,§

that is expanded by two more coordinates. Hence we add the : tva
. . . S 1 A E+Qq,X+X
parameterX itself and a conjugate variablé, defining the =— il IrSy( L v
Hamiltonian so that 7N\ o 1T, h
H(EX,Y)=H(£X) (A2) irS (E+Q,,X+X,) (
—exp : B1)
at each point. Then Hamilton’s equations determine Xhest h £x

a constant of motion, whereas the equations&are unal-
tered, so that the energy of the original systems is still con
stant, equal t&. However, the periodic orbits of the original
systems now correspond to helicoidal orbits such that

which clearly vanishes since
<eirsy(E,§)/ﬁ[eirTy(EX)Ql/hﬂrQy(E,Y)xl/ﬁ
AY=QY(E,X)=J dt Y(&(t),X) = f dt (§(t) X). — eI THEXQMHIQEXNX ]y om0 (B2)

(A3) due to the very rapid oscillations of the term3y/# in the

Conservation oE andX implies that each of these helicoidal averaging |nterva5E Generally, in order to energy average
orbits lies within a two-parameter family in the extendedthe nth power OféNT* we have to calculate terms such as
phase space. Fixing the ener§y we thus obtain a two-
dimensional surface, along which

1
~Ep)y}_< [{ﬁ (r1871+r28,/2+-..+rnSyn)}>E. (B3)

fﬁdq-p+ 3€dx Y- \tﬁdtHzo (A4)
In fact, neglecting repetitionsee comment belowwe con-
for any reducible circuifas a consequence of the Poineare clude thatl(W~0 whenevem is odd, as in Eq(B1). More-
Cartan theorenfi26]). The last integral cancels because theover, for even values oh, we can always find a set of
full energy has been chosen to be identical to the energies @ictions that cancel each other, y|e|d||h ,#0. Due to
the original system, a constant along the surface. Picking thghase-space restrictions, the largest contribution will come
circuit so as to connect two helicoidsorresponding to pe- from sets where the actions are grouped pa|rW|se This al-
riodic orbitg with different parameters, we obtain lows <(5NT*)n> to be factorized into powers GinT*) ),

leading to the Gaussian formula used in Rf0]. Note,
however, that our argument relies on

X
§ dg-p— fﬁ dq-p=f “dx Y, (A5)
X2 X1 X1

recovering Eq(Al). E(rls 1,8+ 41,8, )>1 (B4)
It is important to note that the action difference refers to a h n 72 7n

continuous family of periodic orbits. In the case where there

is a set of multiply symmetry connected orbits, E41) can  for any distinct combination of trajectories. This condition is

also be used if the change of parameter does not break tht necessarily satisfied whers 1.

symmetry. Finally, in a first inspection, the inclusion of repetitions
We also point out that EqA1) refers strictly to an action would seem to spoil our arguments in favor of the Gaussian

difference at constant energy. Of course, it is possible t@nsatz. However, using again phase-space considerations, it

choose different one-parameter families of periodic orbitds simple to see that the number of terms obtained by can-

within the two-parameter family in our problem. Goldberg celing actions using repetitions is much smaller than the

et al.[9] choose a constant volume for the shell instead. Thisiumber of simple pairwise cancellations of primitive orbits.

coincides with the constant energy for unfolded dynamicalThus the effect of the repetitions is not expected to be im-

systems. portant.
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