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Semiclassical limit of universal parametric density correlations
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This paper is devoted to a critical study of parametric level density fluctuations of systems whose classical
counterparts present chaotic dynamics. Employing a semiclassical theory based on the Gutzwiller trace for-
mula, we show that for large parametric changes the density correlation function, after rescaling, becomes
universal and coincides with the leading asymptotic term obtained from random matrix theory. The essential
advantage of the semiclassical approach is to provide a simple recipe for the calculation of the nonuniversal
scaling parameter from elements of the underlying classical dynamics specific to the system. We also discuss
recent improvements of the semiclassical theory, which introduce a requantization of the smoothed level
density. With this method, we calculate the universal density correlations as a function of a time-reversal
symmetry breaking parameter.@S1063-651X~98!09211-3#
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I. MOTIVATION

One of the interesting developments in the study of qu
tum manifestations of classical chaos concerns param
correlations. For over a decade, most of the works on qu
tum chaos concentrated on spectral fluctuations of a fi
Hamiltonian. This large effort led to a solid body of eviden
that if a system is chaotic in the classical limit, its quantu
spectrum exhibits universal fluctuations that coincide w
those of a suitable ensemble of random matrices@1#. There
was also some parallel activity in trying to understand
statistical behavior of quantities related to the response
chaotic Hamiltonian to external perturbations, such
Landau-Zener transitions@2# and energy level curvature@3#.
However, it was only a few years ago that Altshuler a
co-workers@4,5# showed that a system whose spectrum f
lows closely the universal fluctuations predicted by rand
matrix theory~RMT! will also present universalparametric
behavior. More precisely, these authors have concluded
when a chaotic Hamiltonian depends on some external a
batic parameterX, any correlation function of spectral fluc
tuations taken at different values ofX becomes system inde
pendent after a proper rescaling.

In this paper we study some universal spectral feature
a quantum mechanical problem whose HamiltonianH gen-
erates chaotic motion in its classical limit. Considering
parametric dependence ofH on X, the Schro¨dinger equation
reads

H~X!Cn~r ;X!5En~X!Cn~r ;X!. ~1!

In what follows the parameterX will be associated with any
tunable physical quantity provided its variation neither alt
PRE 581063-651X/98/58~5!/5693~11!/$15.00
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significantly the classical dynamics of the system nor bre
or restores any symmetry, unless otherwise specified.
first condition is easily realized in the semiclassical lim
since classically small parameter variations are respons
for significant level fluctuations. The second condition is n
difficult to satisfy in most cases of practical relevance.

Previous works have concentrated on the level veloc
correlation function@4,6#

C~X!5
1

D2 K ]En

]X̄
S X̄2

X

2
D ]En

]X̄
S X̄1

X

2
D L

X̄,n

, ~2!

whereD denotes the mean level spacing around the statn.
This function, although straightforward to evaluate nume
cally, is not suitable for any exact or systematic analyti
evaluation. We would like to stress that the difficulty is i
trinsic to the function since it requires the precise knowled
of every level as a function ofX. Therefore, instead of the
usual two-point Green’s function, one would need a com
nation of arbitrarily highN-point Green’s functions, which is
very impractical. A few years ago, Berry and Keating@7#
proposed a semiclassical approximation based on the de
correlation function forC(X). Their result agrees very nicel
with the numerical results@8# for the largeX limit, indicating
that the two-point Green’s function gives a good asympto
expansion. For the smallX region, their analytical expressio
gives, as one would expect, incorrect results.

For these reasons, in order to study parametric statis
semiclassically, we will rather focus on a formally mo
amenable quantity, namely, the density correlation functi
5693 © 1998 The American Physical Society
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K~V,X!5 K rflS E2
V

2
,X̄2

X

2 D rflS E1
V

2
,X̄1

X

2 D L
E,X̄

,

~3!

where the fluctuating densityrfl5r2^r& is defined in terms
of the level density

r~E,X!52
1

p
Im (

n

1

E2En~X!1 i01 ~4!

and the average density^r& or the inverse mean level spacin
1/D. Sometimes, in the semiclassical approach, it is con
nient to use the cumulative level densityN(E), defined as
N(E)5*2`

E dE8r(E8), instead of the density itself, as w
shall see in Sec. IV.

All statistical measures of spectral fluctuations presupp
a constant average level spacing, which is not guarantee
general families of Hamiltonians. Indeed, the mean le
spacing for smooth Hamiltonians is accurately approxima
by the Weyl ruleNWeyl(E,X)'V(E,X)/(2p\)d, whered is
the number of degrees of freedom and

V~E,X!5E ddp ddq Q„E2H~p,q,X!…, ~5!

Q being the unit step function. It is therefore desirable
work with the ‘‘volume spectrum’’ rather than directly wit
the energy spectrum, as proposed by Goldberget al. @9#. So
as to avoid some technicalities in the classical theory,
will adopt the alternative procedure of defining an ‘‘unfold
classical Hamiltonian’’

H8~p,q,X!5V„H~p,q,X!,X…. ~6!

The classical motion is then identical to that of the origin
Hamiltonian, except for a rescaling in time. Quantizing E
~6!, we obtain levelsEn8 that fluctuate withX about stable
mean valuesn(2p\)d, i.e., for the unfolded system,D
5(2p\)d. ~The primes will be omitted in what follows.!

The paper is organized as follows. In Sec. II we prese
reminder of the main parametric RMT results, extracting
relevant asymptotic correlation functions. In Sec. III t
standard semiclassic theory is discussed, putting emphas
the diagonal approximation and its sequels. In Sec. IV
discuss the implications forK(V,X) of the recent proposa
of Bogomolny and Keating@10# for requantization of the
smoothed level density. This method gives very interest
results for level density correlations in the crossover reg
between time-reversal and broken time-reversal symme
systems. This is discussed in Sec. V. We summarize
results and conclude with a general discussion about
range of validity of the semiclassical approach in Sec. V

II. REMINDER OF THE RANDOM MATRIX THEORY
RESULT

The RMT calculations leading to an exact expression
K(V,X) have become relatively standard. Several referen
can serve as introduction to the subject~see, for instance
@11–13#!. The detailed derivation ofK(V,X) was given in
Ref. @6# in the context of disordered metallic systems. T
technique employed for such continuous systems, know
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the supersymmetric method, can be easily adapted to disc
Hamiltonians. Within this context, one of the most importa
conclusions drawn from Refs.@5, 6# is the existence of a
single quantity controlling the scale of parametric fluctu
tions of all spectral functions of chaotic Hamiltonians. Th
result was obtained explicitly for disordered metallic syste
in the diffusive regime~the so-called zero mode! as well as
~but less surprisingly! in RMT whenN→`. More precisely,
if X is the external parameter, the rescalingx5X/Xc , where

Xc5 K F 1

D

dEn~X!

dX G2L 21/2

, ~7!

eliminates all system dependence in the parametric corr
tion functions, up to a global prefactor. We will later argu
that a similar conclusion can be obtained from a purely se
classical approach.

We now present the results of Ref.@6# in the rescaled
form, assuming also that all energies are expressed in te
of D, introducingv5V/D. In the absence of time-reversa
symmetry, the final result for the density correlation functi
is

kGUE~v,x!5
1

2
Re E

21

1

dlE
1

`

dl1 exp@2FGUE~l,l1!#,

~8!

wherek5K/^r&2 and the free energy is given by

FGUE5
p2x2

2
~l1

22l2!1 ipv1~l2l1!, ~9!

with v15v1 i01. The integration in Eq.~8! can be carried
out explicitly and gives

kGUE~v,x!5
1

4x2
ImH erfcS px1 iv/x

&
D

3FerfcS 2v/x1 ipx

&
D

2erfcS 2v/x2 ipx

&
D G J , ~10!

where erfc is the complementary error function@14#.
For systems where time-reversal symmetry is preserv

modeled by the Gaussian orthogonal ensemble~GOE!, the
density correlation function is

kGOE~v,x!5Re E
21

1

dlE
1

`

dl1E
1

`

dl2

3
~12l2!~l2l1l2!2

~2ll1l22l22l1
22l2

211!2

3exp@2FGOE~l,l1 ,l2!#, ~11!

with the free energy
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FGOE5
p2x2

4
~2l1

2l2
22l1

22l2
22l211!1 ipv1~l2l1l2!.

~12!

In distinction to the previous case, here the triple integra
Eq. ~11! cannot be expressed in a closed form.

We will now focus on a regime where one has eithex
@1 or v@1. Considering initially large variations of th
external parameter, one finds that the leading contribution
the multiple integrals come from the regions around t
points: l5l15l251 andl52l152l2521. To obtain
an asymptotic expression fork(v,x), we expand the free
energies around these points and retain the~linear in l!
lowest-order terms. Performing the exponential integrals,
find that

kGUE~v,x!'2
1

2

p2v22p4x4

~p2v21p4x4!2 1
1

2

cos~2pv!

p2v21p4x4

~13!

and

kGOE~v,x!'2
p2v22p4x4/4

~p2v21p4x4/4!2 1
1

2

cos~2pv!

~p2v21p4x4/4!2 .

~14!

The right-hand sides of both equations represent the lea
terms of an asymptotic expansion on bothx andv whenever
up2x2b/22 ipvu@1, with b51 for the GOE andb52 for
the Gaussian unitary ensemble~GUE!. At x50 one has the
usual 1/v2 decay of the density fluctuations plus the fir
oscillating terms. Notice also that the oscillating a
nonoscillating terms are held only to their lowest order
x22 and v22. For the GOE, this means that we are n
showing a nonoscillating term of orderv24. For the GUE,
higher-orders terms can be obtained without much effort
recalling Eq.~10!.

The energy oscillations present in Eqs.~13! and ~14! are
related to the quantum~discrete! nature of the energy spec
trum. For the GUE case they appear even at the lowest o
in v22; in fact, for x50, the asymptotic form~13! is actu-
ally exact and applies to allv scales. For the GOE cas
since level repulsion is less pronounced, the oscillations o
show up at the next-lowest order, namely, they are wea
corrections to the leadingv22 decay.

One is tempted to imagine that thev oscillations should
not be present in a formulation where there is no intrin
energy level quantization. Indeed, in Sec. III we will veri
that the semiclassical trace formula~applied in the usual way
and based on the assumption that the underlying clas
dynamics is chaotic! yields only the monotonic decay o
k(v,x). Still, a problem emerges as to whether one can s
tematically obtain oscillating terms, or any parametric cor
lation function beyond the asymptotic limit, in a semiclas
cal framework. This question was partially answered
Bogomolny and Keating@10# when they calculatedk(v,x
50) using an expansion in periodic orbits and forced ene
level quantization as an additional constraint. We will retu
to this point later.

Another important aspect, often neglected but particula
relevant to mesoscopic phenomena, is the applicability ra
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of the semiclassical approach used in the study of param
variations. For this purpose, the calculations below will
carried out with special care.

III. SEMICLASSICAL APPROACH

The fluctuating part of the level densityrfl(E,X) can be
smoothed over an energy rangeh/\ and expressed, in the
semiclassic limit, by the Gutzwiller trace formula@15#

rfl~E,X!5
1

2p\ (
g,r

Tg

udet~Mg
r 2I !u1/2

3expS i

\
rSg2

ip

2
rng2

h

\
ur uTgD , ~15!

whereTg , Mg , Sg , and ng stand, respectively, for the pe
riod, monodromy matrix, action, and Maslov index of a p
riodic orbit labeled byg. The sum is performed over a
primitive orbitsg and their repetitionsr ~positive and nega-
tive!, irrespective of multiplicity due to time-reversal o
other symmetries. The smoothing ofrfl can be done in othe
ways than the exponential cutoff introduced in Eq.~15!.
Later on, we shall also cut off the sum over periodic orb
sharply at a certain periodT* . Both h/T* and h/2p are
always taken to be larger than or equal toD. The derivation
of the density correlator we present below is not strictly n
@see, for instance, Ref.@9#!. However, here we will carry it
out with great detail~even correcting mistakes of previou
works! and, by doing so, will clarify its physical content a
well as its limitations.

Let us write the correlation functionK(V,X) in terms of
the semiclassical level density as given by Eq.~15!,

Ksc~V,X!5
1

~2p\!2 K (
g,r ,g8,r 8

Agr S E1
V

2
,X̄1

X

2 D
3Ag8r 8S E2

V

2
,X̄2

X

2 D
3expH i

\ F rSgS E1
V

2
,X̄1

X

2 D
2r 8Sg8S E2

V

2
,X̄2

X

2 D G1 i
p

2
~rng2r 8ng8!

2
h

\
~ ur uTg1ur 8uTg8!J L

E,X̄

, ~16!

whereAgr5Tgudet(Mg
r 2I)u21/2. In order to further proceed

analytically, we restrict the calculations to a regime whe
classical perturbation theory is applicable. This means
we shall consider variations ofE andX that classically imply
a small change in the actionsSg . Such a change can none
theless be very large in the scale of\, corresponding to large
quantum effects. Under this condition, it is a good appro
mation to write
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SgS E6
V

2
,X̄6

X

2
D

5Sg~E,X̄!6
]Sg

]E

V

2
6

]Sg

]X̄

X

2
1•••

[Sg~E,X̄!6Tg~E,X̄!
V

2
6Qg~E,X̄!

X

2
1••• , ~17!

which definesQg as the parametric velocity of the orbit a
tion. The general expression for the parametric variation
the action is presented in Appendix B. In the absence of
dependence on Planck’s constant, one can neglect the en
~or parameter! corrections toAg as compared to the stron
energy dependence of the exponential term. In this appr
mation, consider the evaluation of

I gg8~T!5^ei /\[Sg~E,X̄!2Sg8~E,X̄!]&E . ~18!

For orbits with period shorter than the Heisenberg timetH
[h/D, one does not in general expect to find pairs of orb
(g,g8) with actions differing by less than\, unless they are
symmetry related orbits. As a consequence, upon energy
eraging,I gg8(T,tH)'ggdg,g8 , wheregg is the multiplicity
of symmetry related orbits.~We take here the simplest cas
where any symmetry holds for all considered parameter
ues. The general situation where this is not true is discus
in Sec. V.! This is the essence of the diagonal approximati
On the other hand, due to the exponential proliferation
orbits, for sufficiently long times, i.e., for a small smoothin
parameterh, one enters a regime where there is an ab
dance of pairs of periodic orbits (g,g8) satisfyingSg2Sg8
,\. This situation is expected to occur for time interva
longer thantH ~or, correspondingly, forE,D). Under these
circumstances, the diagonal approximation is no lon
valid. Actually, for such long times even the validity of th
trace formula is problematic, so that the unsmoothed ene
spectrum should be resummed@16#. At this point the neces-
sity of smoothing becomes evident: It keeps the approxim
tions under control.

Restricting ourselves to the range where the diagonal
proximation is valid, we have

KD~V,X!5
1

~2p\!2 K (
g,r

gguAgr~E,X̄!u2

3expH i

\
@rTg~E,X̄!V

1rQg~E,X̄!X#22
h

\
ur uTgJ L

E,X̄

. ~19!

To evaluate the average in Eq.~19! we first notice that, in a
fully chaotic regime, the proportion of high period orbits th
are repetitions of lower periods is exponentially small, so
neglect allur uÞ1. In the next step we recast Eq.~19! as an
integral by defining the smooth interpolating functio
A2(E,X̄,t) through the relation
f
y
rgy

i-

s

v-

l-
ed
.
f

-

r

gy

-

p-

t
e

E dt A2~E,X̄,t !(
g

d~ t2Tg!5(
g

Ag
2~E,X̄!. ~20!

Further simplification can be achieved using the uniform
principle over periodic orbits~also known as the Hannay
Ozorio de Almeida sum rule! @17#

A2~E,X̄,t !(
g

d~ t2Tg! ——→
utu→`

utu. ~21!

It is important to notice that this result independs on t
‘‘center-of-mass’’ variablesE and X̄. We can then evaluate

KD~V,X!5
g

2~p\!2
Re E

t

`

dtutueitV/\22hutu/\^eiQ~E,X̄,t !X/\&.

~22!

The lower limit t is the period of the shortest periodic orb
Of course it is simplistic to extrapolate the uniformity prin
ciple this far, but it is easy to improve the theory by inclu
ing a few short orbits individually and hence increasingt.

The average in Eq.~22! is evaluated over periodic orbit
with fixed periodt. In view of the fact that the rest of the
integrand oscillates rapidly in time, it is important that th
finite range inE andX̄ allows many orbits with a given large
period. There being two parameter families of periodic
bits, one should takeQg„E(X̄),X̄,t… and subsequently aver
age only overX̄ or vice versa. For the energy correlatio
with no variation of parameters, there will be isolated pe
odic orbits of a given period in the energy range where
averaging is carried out. Thus, for fixedX̄, the average in Eq
~22! runs over a large number of periodic orbits with par
metric velocityQg(t), which may be considered as sampl
of the probability distributionPt(Q). The latter is assumed
to be Gaussian,

Pt~Q!5
1

A2pQ2~ t !
expF2

Q2

2Q2~ t !
G , ~23!

because our theory involves arbitrary parametric variati
H(X). Even if there exist correlations among the actions
the periodic orbitsg(t), as postulated by Argamanet al.
@18#, these will in general be broken by the parametric v
locities

Qg5E
0

Tg
dt

]H

]X
„p~ t !,q~ t !,X…, ~24!

evaluated along each orbit. The Gaussian width is a func
of X̄ andĒ ~the center of the energy range!, being defined as

Q2~ t !5
1

N~ t ! (
g~ t !

Qg~ t !
2 , ~25!

whereN(t) is the number of periodic orbits with periodt.
Note that we takeQ̄50 since the shape of the shell for th
unfolded system is affected byX, but not its volume, so
]H/]X averaged over the shell is zero. Although the Gau
ian assumption is not quite equivalent to the uniformity pr
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ciple, the arguments presented above make it plaus
Nothing is yet known of the relation between higher m
mentsQn and Q2, so as to obtain a more rigorous resu
Numerical simulations for the particular case where the
ternal parameter is a magnetic flux line@8# provide further
support of Eq.~23!.

The average in Eq.~22! can be evaluated using Eq.~23!:

^eiQX/\&5expF2
X2

2\2
Q2~Ē,X̄,t !G . ~26!

As we commented previously, the energy average was
ready utilized in obtaining the periodic orbits with fixed p
riod. Strictly, we should now average Eq.~26! over X̄, but
bothQ2 and the Gaussian~23! are smooth functions ofX̄, so
we may just evaluate the latter at the center of the avera
range. As for the time dependence of the mean square p
metric velocity, we refer to previous treatments@9,19#, lead-
ing to the result

Q25autu

with

a~Ē,X̄!52E
0

`

dtK ]H

]X
„p~ t !,q~ t !…

]H

]X
„p~0!,q~0!…L

ES

.

~27!

Here the average over the periodic orbits has been su
tuted by an average over the entire energy shell, in ac
dance with the uniformity principle. It is important to no
that the decay of the classical correlation function in Eq.~27!
need only be integrable since many available chaotic syst
do not exhibit full exponential decay of the correlation
Strictly, the linear dependence ofQ2 on t should hold only
for times longer than that of the decay of the correlat
function, but numerical investigations@8,20# have found this
feature to be quite robust.~Notice that there is a factor 2
missing in the definition ofa in Ref. @8#. Modifying a ac-
cordingly, the semiclassical prediction forXc changes by a
factor&. As a result, the agreement between the nume
and the semiclassical theory becomes excellent.!

Substituting Eqs.~27! and~26! into Eq. ~22! and evaluat-
ing the integral in the limitt→0, we finally arrive at the
main result of this section

KD~V,X!52
1

bp2

V22~aX2/2\12h!2

@V21~aX2/2\12h!2#2 , ~28!

where b52/g. Nongeneric long-wavelength oscillations
the correlation, characteristic of each individual system,
pear when we chooset equal to or greater than the period
the shortest periodic orbit. The above expression correspo
to the leading nonoscillatory term of the asymptotic exp
sion of the correlation function exactly calculated with
RMT @Eqs.~13! and~14!# and hence is presumed to hold f
generic chaotic systems.

On the other hand, this formalism gives a recipe for c
culatinga, which is a system-specific quantity and fixes t
value of the parametric rescaling factorXc . From this point
of view, the semiclassical method and RMT are complem
le.
-

-

l-

ng
ra-

ti-
r-

s
.

s

-

ds
-

l-

-

tary for a full understanding ofK(V,X). An important im-
mediate application concerns possible transitions from G
families to GUE families of Hamiltonians. If this occurs fo
a small variation of a second parameter as in@19#, the clas-
sical parametera should remain unchanged, whereasXc
must grow because of increased level repulsion. By comp
ing the invariant form of Eq.~28! with Eqs.~13! and~14! we
verify that Xc will increase by a factor&.

IV. REQUANTIZATION AND ITS IMPLICATIONS
FOR THE DENSITY CORRELATION FUNCTION

In a recent paper, Bogomolny and Keating@10# proposed
a semiclassical procedure to obtain the density correla
function K(V,0) and its parametric extensionK(V,X).
Their result forK(V,0) coincides with the exact GUE ex
pression for systems with broken time-reversal invarian
and gives the leading GOE oscillatory and nonoscillato
terms in powers ofv22 for time-reversal symmetric system
We will here rederive their results within the wider conte
of parametric variations and critically comment some of
limitations.

The starting point of the derivation in Ref.@10# is stan-
dard and considers the sum over periodic orbits in
Gutzwiller trace formula~15! up to some value ofT* . As a
consequence, the information about energy scales sm
than\/T* is omitted and, strictly speaking, the connection
RMT results cannot be made in such an energy range. H
ever, one can still introduce information related to the d
crete nature of the spectrum through the ‘‘requantizatio
condition @21#

NT* „En~T* !…5n1
1

2
, ~29!

by which, for a given value ofT* , one has a well-defined
procedure to obtain a set of eigenvalues$En(T* )%. It has to
be stressed that such a procedure does not imply any co
on accuracy. This is equivalent to saying that by increas
the value ofT* , it is not guaranteed that$En(T* )% will
converge to the exact spectrum. Actually, this quantizat
rule is not applicable forT* .tH since for such periods the
cumulative semiclassical level density can become a n
monotonic function.

The requantized level density, defined as

DT* ~E,X!5(
n

d„E2En~T* ,X!…, ~30!

can be rewritten in the form

DT* ~E,X!5rT* ~E,X!(
n

d„NT* ~E,X!2n21/2…

5rT* ~E,X! (
k52`

1`

~21!k exp@2p ikNT* ~E,X!#,

~31!

with rT* (E,X) standing for the parametric level densi
given by the truncated trace formula. It is immediate to s
that averaging Eq.~31! yields
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^DT* ~E,X!&E,X5^rT* ~E,X!&E,X[rWeyl~E,X!, ~32!

equivalent to the usual level density, easily obtained from
Weyl formula.

The advantages of this procedure become evident onc
analyze the spectral fluctuations. Let us study the two-p
spectral correlation function forDT* (E) in order to compare
with the results of the previous sections. It is useful to wr
the density correlation function in the form

K~V,X!5 K DT* S E1
V

2
,X̄1

X

2 D
3DT* S E2

V

2
,X̄2

X

2 D L
E,X̄

2~rWeyl!2. ~33!

The averages are defined as in Sec. III. Thus

K~V,X!5K rT* S E1
V

2
,X̄1

X

2 D rT* S E2
V

2
,X̄2

X

2 D
3 (

k1 ,k2

~21!k12k2

3expH 2p i Fk1NT* S E1
V

2
,X̄1

X

2 D
2k2NT* S E2

V

2
,X̄2

X

2 D G J L
E,X̄

2~rWeyl!2.

~34!

One can recover the standard semiclassical result discu
in Sec. III by considering the simplest term in the doub
sum, namely,k5k15k250:

Kk50~V,X!5 K rT*
fl S E1

V

2
,X̄1

X

2 D
3rT*

fl S E2
V

2
,X̄2

X

2 D L
E,X̄

. ~35!

This is the same calculation as presented in Sec. III, ex
that now the exponential cutoff is substituted by a sh
truncation atT* . This causes a spurious oscillatory term th
becomes negligible only in the asymptotic regime wh
aX2/2\@D. In other words, the semiclassical result b
comes independent of the cutoff only at the asymptotic lim
where it coincides with RMT. In Ref.@10#, this term with
k15k250 was called the diagonal approximation. Th
should not be confused with the standard diagonal appr
mation discussed in Sec. III.

We are left to discuss the terms withk1Þ0 andk2Þ0. It
is easy to see that the ones withk1Þk2 give a negligible
contribution to the correlation function. Indeed, dividing t
spectrum for the unfolded system~6! into a smooth and a
fluctuating part (NT* 5NWeyl1NT*

fl ) we haveNWeyl(E,X)
5E/(2p\)d. For this part, the average~34! furnishes
e

we
nt

ed

pt
p
t
e
-
t,

i-

U K expH 2p i Fk1NWeylS E1
V

2
,X̄1

X

2
D

2k2NWeylS E2
V

2
,X̄2

X

2
D G J L

E,X̄
U

5
~2p\!d

~k12k2!dE
sinF ~k12k2!dE

~2p\!d G
5

sin@~k12k2!dN#

~k12k2!dN
, ~36!

which is negligible if the averaging regiondE extends over
many states, unlessk15k2 . Thus,

KkÞ0~V,X!5
1

4p2

]2

]V1]V2
(
kÞ0

1

k2

3exp@2p ik~V12V2!rWeyl#

3Fk~V1 ,V2 ,X1 ,X2! ~37!

~evaluated atV152V25V/2 andX152X25X/2), where
k[k15k2 and

Fk~V1 ,V2 ,X1 ,X2!5^exp$2p ik@NT*
fl

~E1V1 ,X̄1X1!

2NT*
fl

~E1V2 ,X̄1X2!#%&E,X̄ . ~38!

One is now left with the formidable task of averaging E
~38!, for which there is no clear controllable strategy. Bog
molny and Keating@10# proposed a kind of Gaussian ansa
that in practice simplifies the average by maki
^exp@iG(E)#&5exp@2^G2(E)&/2#. Although appealing, this
ansatz is harder to justify classically than a similar passag
Sec. III. Moreover, it is not clear how to implement the a
eraging in a consistent way. Nevertheless, in Appendix B
attempt to justify the validity of the Gaussian assumpti
~for large energy differences as compared toD! using solely
the diagonal approximation. Based on that, we have

Fk~V1 ,V2 ,X1 ,X2!5exp$22p2k2^@NT* ~E1V1 ,X̄1X1!

2NT* ~E1V2 ,X̄1X2!#2&E,X̄%. ~39!

There are at least two straightforward ways to evaluate
average in Eq.~39!, both giving the same final result. Th
first one is by direct subtraction of the cumulative densiti
followed by the use of the diagonal approximation. The s
ond one has the nice property of putting in evidence som
the delicate points of the semiclassical averaging proced
and will be discussed now. An important point to have
mind, however, is that the average in the exponent of
~39! is just the usual number varianceS2(V) when X1
5X2 . If we were interested inX50 correlations atV!D
and simply substituted into Eq.~39! the exact RMT expres-
sion for S2(V), we would obtain an incorrect result for th
level density correlation function. We interpret this fact as
clear indication that the Gaussian ansatz, which neglects
relation between orbits, is problematic forV/D!1. Even
Bogomolny and Keating@10# noticed that the Gaussian an
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satz does not lead to the correct expression for the G
Until the theory is developed further, we believe that t
exact result for the GUE should be treated as a fortun
coincidence. This limitation will appear more explicitly be
low.

Let us start by writing Eq.~39! as

Fk~V1 ,V2 ,X1 ,X2!5FL~V1 ,V2 ,X1 ,X2!

L0
Gk2

, ~40!

with

ln L~V1 ,V2 ,X1 ,X2!54p2^NT*
fl

~E1V1 ,X̄1X1!

3NT*
fl

~E1V2 ,X̄1X2!&E,X̄ ,

~41!

andL05L(0,0,0,0). Then we evaluateL0 using the diago-
nal approximation~see, for instance,@22#!

^@NT* ~E,X̄!#2&E,X̄5
g

2p2 Et

T*
dt

1

t
5

g

2p2
lnS T*

t D .

~42!

The lower bound of integration is of the order of the short
periodic orbit, beyond which we cannot even extrapolate
uniformity principle. Recalling that in our case the energy
the shell is identified with its volume, we obtain, from pure
geometrical considerations, that

t 5
]S

]E
}E2~121/d!. ~43!

If we now chooseT* 5ktH (tH is the Heisenberg time!, Eq.
~42! becomes

^@NktH
~E,X̄!#2&5

2

gp2 S 12
1

dD lnS E

D D1const. ~44!

It is interesting that we recover the RMT result only in t
limit where the phase space dimensiond→`. ~Incidentally,
the above formula accounts for the spectral rigidity of t
integrable limit ofd51.)

Applying now the diagonal approximation to the nume
tor of Eq. ~40!, we write

ln L~V1 ,V2 ,X1 ,X2!

52g Re E
t

T*
dt

1

t
expF i

\
~V12V2!t2

a~X12X2!2t

2\2 G ,
~45!

which can be expressed in a compact form as

ln L~V1 ,V2 ,X1 ,X2!52g Re@E1~jt!2E1~jT* !#,
~46!

with j52 i (V12V2)/\1a(X12X2)2/2\2 andE1 denoting
the exponential integral@14#. Recalling thatT* is of the
order of h/D and t is a much shorter time scale, we ha
E.

te

t
e
f

-

ujT* u@1 andujtu!1. As a consequence,E1(jT* ) is expo-
nentially small andE1(jt) can be expanded up to first orde
@14#. The result is

ln L~V1 ,V2 ,X1 ,X2!'2g Re@2g2 ln~jt!#

'2g ReF2g1 lnS T*

t D2 ln~jT* !G ,
~47!

whereg is the Euler constant. Collecting the above resu
into Eq. ~39!, we see that the first two terms on the righ
hand side of Eq.~47! are canceled by lnL0 and

Fk~V1 ,V2 ,X1 ,X2!

5UF2
i

\
~V12V2!1

a~X12X2!2

2\2 GegT* U22gk2

. ~48!

Hence the sum overk in Eq. ~37! is an asymptotic series in
inverse powers ofjT* . To obtain the parametric generaliza
tion of Bogomolny and Keating result@10#, we cut off this
series in the first term and chooseT* eg5tH/2, obtaining

K uku51~V,X!5
cos~2pV/D!

2D2 U D

2 ipV1ap2X2/h
U4/b

,

~49!

which, after proper rescaling, is exactly Eq.~13! or ~14!,
depending on the symmetry class labeled byb52/g.

It thus appears that requantization has reproduced
cisely the asymptotic form of the correlation function calc
lated exactly within RMT if we postulate the same factor
& for the change inXc from the GOE to the GUE. However
in taking a sharp cutoff for the periodic orbit sum, we add t
spurious oscillatory term

gT* cosS VT*

\
2f D expS 2

aX2T*

2\2 D
2p2\FV21S aX2

\
D 2G ~50!

to Eq. ~28! with h50 @above,f5tan21(2\V/aX2)]. This
will certainly be negligible ifaX2T* /2\2@1, but we cannot
push aX2/2\ down to the averaged level spacing. Indee
the derivation of Eq.~49! does not hold at this level eithe
since there one should not neglect the upper limit of Eq.~45!.

These conclusions are maintained if we substitute forNT*
the integral of the smoothed density of Sec. III in the requ
tization of Bogomolny and Keating. The steps in the calc
lation of the correlation function remain the same, so n
Kk50(V,X) is exactly Eq.~28! with a finite h. The expres-
sion for
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ln L~V1 ,V2 ,X1 ,X2!52g Re E
t

`

dt
1

t
exp$ i ~V12V2!t/\

2@a~X12X2!2/2\212h/\#t%

52g Re E1@2 i ~V12V2!t/\

1a~X12X2!2t/2\212ht/\#

~51!

now holds, in principle, for any value ofV j or Xj , including
zero. We can now use the same approximation for the ex
nential integral function as in Eq.~47! to obtain

Fk~V1 ,V2 ,X1 ,X2!

5UF2
i

\
~V12V2!1

a~X12X2!2

2\2 12h/\G \

2h
U22gk2

,

~52!

which leads to Eq.~49! when we chooseh5D/2p and as-
sumeV andaX2/2\ to be much greater than the mean lev
spacing. In this sense, the energy smoothing withh corre-
sponds to the cutoff timeT* (hT* ;h).

V. THE GOE-GUE TRANSITION

So far we discussed only level correlation functions in
limits of preserved or fully broken time-reversal symmet
corresponding in RMT terminology to the GOE and GU
cases, respectively. We showed that forXÞ0 the semiclas-
sical approach is only asymptotically correct. It is notew
thy that the requantization method gives the exact result
the density-density correlation function forX50 in the GUE
case and fails to reproduce the GOE result in the same
ation. To study the nature of this peculiar behavior, in t
section we use the requantization procedure proposed in
@10# to analyze the GOE-GUE transition. We compare o
results to the exact analytical results originally obtained
Mehta and Pandey@23#.

The density correlation function we are interested in is

KX~V!5 K rflS E2
V

2
,XD rflS E1

V

2
,XD L

E

, ~53!

whereX is the parameter that breaks time-reversal symm
try, usually an external magnetic fieldB. Notice that in dis-
tinction to the previous sections, the correlation functi
considers both densities at the same value ofX.

To derive the density correlation function in the GO
GUE crossover using the requantization scheme, we
have to write and explain the standard semiclassical exp
sion obtained in Ref.@19#. This is easily done by recalling
the results from Sec. III. Within classical perturbation theo
the GOE-GUE transition is caused by an external magn
field: ForB50 every path has its mirror image, obtained
momentum conjugation. This symmetry is taken into acco
in the trace formula by the multiplicityg factor. When the
symmetry is broken, the phase matching between orbits
o-

l

e
,

-
r

u-
s
ef.
r
y

-

st
s-

ic

t

a

pair is no longer perfect, but can still affect the correlati
function. Thus, in the diagonal approximation,KX(V) can
be written as@19#

KX
D~V!5

1

2~p\!2
Re E

t

`

dtutueitV/\22hutu/\

3^11eiQ~E,X,t !X/\&E . ~54!

Following the arguments of Ref.@19# and Sec. III, we write
^exp(iQX/\)&E5exp@2a(E)utu/\2# and obtain

KX
D~V!52

1

2p2~V214h2!

2
1

2p2

V22@a~E!/\12h#2

$V21@a~E!/\12h#2%2 . ~55!

To include requantization corrections we proceed as
Sec. IV @see Eqs.~39!–~45!#, having to calculate now
LX(V1 ,V2) andLX(0,0), which are given by

ln LX~V1 ,V2!52 ReE
t

T* dt

t
ei ~V12V2!t/\@11ea~E!t/\2

#.

~56!

This expression can be approximated by

ln L~V1 ,V2!'2 ReH 22g12 ln
T*

t

2 lnF2 i
~V12V2!

\
T* G

2 lnF S 2 i
~V12V2!

\
1

a~E!

\2 DT* G J , ~57!

resulting, for the density correlation function, in

KX
uku51~V!5cosS 2p

V

D
D H 1

2p2V2 2
1

2@p2V212a2/\2#
J .

~58!

This equation plus the diagonal term coincides only asym
totically (v@1) with the RMT result obtained by Mehta an
Pandey@23#:

kx~v!52S sin pv

pv
D 2

2
v2 cos2 pv216p2x4 sin2pv

p2~v2116p2x4!2 1•••

52
1

2p2v2 1
v2216p2x4

2p2~v2116p2x4!2

1cos~2pv!F 1

2p2v2 2
1

2p2~v2116p2x4!
G ~59!

~where we have employed the rescaling of Sec. II!. It is
important to have in mind that the derivation of Eq.~58! uses
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an approximation inLX(0,0) that requiresaT* /\2 to be
much larger than a unit. ForaT* /\2!1, the dominant term
of KX

uku51 coincides with the GOE result obtained in Sec. I
as it should.

Again, we identify the RMT crossover parameter wi
a semiclassical quantity given by the relatio
x25a(E)/4p2\D. We stress that the agreement is on
strictly exact for fully broken time-reversal symmetry~the
GUE!. To understand this point, it is insightful to examin
the supersymmetric derivation of the GOE-GUE crosso
for the density correlation function@24#. By direct compari-
son, one can observe that the semiclassical method fai
reproduce the structure of the threefold integral that is ub
uitous to all calculations of correlation functions in the GO
limit, as previously noticed by Bogomolny and Keating@10#.

VI. FINAL DISCUSSION AND CONCLUSIONS

The Gutzwiller series does not converge in the limit
small smoothing. Indeed, it can be argued that the expon
tial smoothing used in Sec. III is insufficient, but Gauss
smoothing does work and leads to equivalent results.
application of the periodic orbit theory for nongeneric lon
range oscillations of the energy level correlation functio
was pushed in the past decade to a range where contact
be made with the universal regime of RMT. This involv
the uniformity principle for long periodic orbits as well a
the diagonal approximation. In our study we have used
semiclassical trace formula to show the universality of
level density parametric correlation function for classica
chaotic systems. This universality manifests itself afte
proper rescaling of the correlation function variables. With
the range of validity of the semiclassical formulation and
the diagonal approximation, we have obtained the sa
functional dependence on the energy and external param
found by the method of RMT.

From a purely utilitarian point of view, it may appea
unnecessary to rederive RMT results within a semiclass
theory. Yet it is only in this way that we can calculate t
arbitrary parameters in RMT as well as derive the nongen
long-range oscillations characteristic of the individual s
tems that we wish to measure. In the present case we con
that the unfolded mean square parametric velocity dim
ishes by a factor of& when the time-reversal symmetry
broken.

The semiclassical description of parametric correlatio
relies on the ansatz of Eq.~23!, which is based on the centra
limit theorem and leads to Eq.~27!. To demonstrate rigor-
ously the validity of Eq.~23! for a generic classical chaoti
system, a systematic study of higher moments ofQg is re-
quired, which is quite a difficult task. Notwithstanding, the
is solid numerical evidence@8,20# to support the propose
Gaussian ansatz. As a consequence of Eq.~27!, aX2/2\ will
always appear on the same footing asV in the semiclassica
approach, i.e., by replacingiV with iV2aX2/2\, as sug-
gested in Ref.@10#. In general, this is not the case in RMT, a
one can see in Sec. II. Only after linearizing the ‘‘effecti
action’’ ~what we do to generate the asymptotic expansi!
do we see the semiclassical structure emerge. It is impor
to notice that, contrary to what has been written previously
the literature@9#, a is not related to a Lyapunov exponent
r
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It seemed that one would have to proceed beyond
diagonal approximation to recover the oscillatory behav
that RMT predicts at short scales. However, the remarka
requantization scheme advanced by Bogomolny and Kea
shows that it is only necessary to feed in the discretenes
the quantum spectrum to obtain an expression for the co
lation functions that extrapolate to the correct oscillato
RMT result in the asymptotic limit of largeV2

1a2X4/4\2. It is also important to stress that only diagon
information about periodic orbits enters into this result, co
trary to what the title of Ref.@10# may suggest. In othe
words, nothing is said about correlations among orbit
tions, so that these may affect only higher terms in
asymptotic expansion. In fact, to obtain higher-order corr
tions matching the exact series, one would certainly nee
introduce information about interlevel correlations as we
which is apparently beyond the capability of any pres
semiclassical approach, especially in the case of arbit
parameter variations.

We have based our discussion of Bogomolny and Ke
ing’s requantization on the simple Gaussian assumption
cussed in Appendix B. It is true that in their paper they a
present results derived directly from theZ function. The ad-
vantage is that account is then taken of the correlations
sulting from multiple repetitions of each periodic orbit. How
ever, this is a weak effect~as they show!, whereas the
integral that is then exactly performed still presupposed r
dom phases between different periodic orbits. This abse
of correlations between orbits with periods below t
Heisenberg time seems to be at the basis of the success o
requantization scheme. Thus it will be interesting to study
compatibility with the results of Argamanet al. @18#.

The intrinsic limitation of the semiclassical method
cover small energies at the quantum scale is remarka
manifest in the parametric correlations. The lack of accur
in energy rangesV&D imposes a limitation on the accurac
of parametric correlation function forX&Xc , as one can see
from Eq.~28!. In the standard derivation of Sec. III, this is
direct consequence of the necessity of smoothing the le
density. Even in the requantization scheme, although not
plicitly, the same problem occurs since both sharp a
smooth cutoffs in the Gutzwiller series do not ensure conv
gence to the actual eigenvalues. The theory of Sec. V
phasizes that it is only for fully broken time-reversal sym
metry ~the GUE! that the requantized correlation functio
can be extrapolated to an energy range below the mean
spacing.

Finally, we remark that in this work we did not attempt
investigate deviations from the universal, RMT behavior d
to large-scale structures in the spectrum that can be
mately related to short periodic orbits of the system~see, for
instance, the supersymmetric treatment used in Ref.@25# for
finite conductance disordered systems!. Again, the requanti-
zation scheme seems to be a good starting point for s
systematic studies from a purely semiclassical point of vie
Unfortunately, at present we only know how to proce
safely by restricting ourselves to the energy range where
diagonal approximation is accurate.
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APPENDIX A: PARAMETRIC VARIATION
OF PERIODIC ORBITS

It may be surprising that we can integrate the parame
velocity Qg in Eq. ~24!, obtained from classical perturbatio
theory to yield the exact result

S~E,X2!2S~E,X1!5E
X1

X2
dXE

0

T~E,X!

dt
]H

]X
„j~ t !,X…, ~A1!

where j5(p,q) are vectors in the classical phase spa
Thus there is no limit on the period of the orbit if we kee
the right order of integration. We can obtain the express
above by embedding the one-parameter family of Hami
niansH(j,X) into a single HamiltonianH in a phase space
that is expanded by two more coordinates. Hence we add
parameterX itself and a conjugate variableY, defining the
Hamiltonian so that

H~j,X,Y![H~j,X! ~A2!

at each point. Then Hamilton’s equations determine thatX is
a constant of motion, whereas the equations forj are unal-
tered, so that the energy of the original systems is still c
stant, equal toE. However, the periodic orbits of the origina
systems now correspond to helicoidal orbits such that

DY5Qg~E,X!5E
0

Tg
dt Ẏ„j~ t !,X…5E

0

Tg
dt

]H

]X
„j~ t !,X….

~A3!

Conservation ofE andX implies that each of these helicoid
orbits lies within a two-parameter family in the extend
phase space. Fixing the energyE, we thus obtain a two-
dimensional surface, along which

R dq•p1 R dX Y2 R dt H50 ~A4!

for any reducible circuit~as a consequence of the Poinca´-
Cartan theorem@26#!. The last integral cancels because t
full energy has been chosen to be identical to the energie
the original system, a constant along the surface. Picking
circuit so as to connect two helicoids~corresponding to pe
riodic orbits! with different parameters, we obtain

R
X2

dq•p2 R
X1

dq•p5E
X1

X2
dX Y, ~A5!

recovering Eq.~A1!.
It is important to note that the action difference refers t

continuous family of periodic orbits. In the case where th
is a set of multiply symmetry connected orbits, Eq.~A1! can
also be used if the change of parameter does not break
symmetry.

We also point out that Eq.~A1! refers strictly to an action
difference at constant energy. Of course, it is possible
choose different one-parameter families of periodic orb
within the two-parameter family in our problem. Goldbe
et al. @9# choose a constant volume for the shell instead. T
coincides with the constant energy for unfolded dynami
systems.
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APPENDIX B: JUSTIFICATION FOR THE GAUSSIAN
ANSATZ

In this appendix we motivate the Gaussian ansatz use
Ref. @10# using arguments based solely on the diagonal
proximation. Let us start by Taylor expanding the expone
tial term of Fk of Eq. ~38!, thus recasting the original expo
nential averaging problem into an averaging of increas
powers of (dNT*

fl )n, with dNT*
fl [NT*

fl (E,X)2NT*
fl (E8,X8).

The lowest-order term of the Taylor expansion (n51),
taken within the validity range of classical perturbatio
theory, can be written as

^NT*
fl

~E1V1 ,X̄1X1!2NT*
fl

~E1V2 ,X̄1X2!&E,X̄

5
1

p2 K (
r ,Tg,T*

Agr

rTg
Fexp

irSg~E1V1 ,X̄1X1!

\

2exp
irSg~E1V2 ,X̄1X2!

\
G L

E,X̄

, ~B1!

which clearly vanishes since

^eirSg~E,X̄!/\@eirT g~E,X̄!V1 /\1 irQ g~E,X̄!X1 /\

2eirT g~E,X̄!V2 /\1 irQ g~E,X̄!X2 /\#&E,X̄50 ~B2!

due to the very rapid oscillations of the term inSg /\ in the
averaging intervaldE. Generally, in order to energy averag
the nth power ofdNT*

fl we have to calculate terms such a

I $r ,g%
~n! 5 K expF1

\
~r 1Sg1

1r 2Sg2
1•••1r nSgn

!G L
E

. ~B3!

In fact, neglecting repetitions~see comment below!, we con-
clude thatI (n)'0 whenevern is odd, as in Eq.~B1!. More-
over, for even values ofn, we can always find a set o
actions that cancel each other, yieldingI $r ,g%

(n) Þ0. Due to
phase-space restrictions, the largest contribution will co
from sets where the actions are grouped pairwise. This
lows ^(dNT*

fl )n& to be factorized into powers of^(dNT*
fl )2&,

leading to the Gaussian formula used in Ref.@10#. Note,
however, that our argument relies on

1

\
~r 1Sg1

1r 2Sg2
1•••1r nSgn

!@1 ~B4!

for any distinct combination of trajectories. This condition
not necessarily satisfied whenn@1.

Finally, in a first inspection, the inclusion of repetition
would seem to spoil our arguments in favor of the Gauss
ansatz. However, using again phase-space consideratio
is simple to see that the number of terms obtained by c
celing actions using repetitions is much smaller than
number of simple pairwise cancellations of primitive orbi
Thus the effect of the repetitions is not expected to be
portant.
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